Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050029

RESUMO

The structural and energetic properties of small silver clusters Agn with n = 2-100 atoms are reported. For n = 2-100 the embedded atom model for the calculation of the total energy of a given structure in combination with the basin-hopping search strategy for an unbiased structure optimization has been used to identify the energies and structures of the three energetically lowest-lying isomers. These optimized structures for n = 2-11 were subsequently studied further through density-functional-theory calculations. These calculations provide additional information on the electronic properties of the clusters that is lacking in the embedded-atom calculations. Thereby, also quantities related to the catalytic performance of the clusters are studied. The calculated properties in comparison to other available theoretical and experimental data show a good agreement. Previously unidentified magic (i.e., particularly stable) clusters have been found for n>80. In order to obtain a more detailed understanding of the structural properties of the clusters, various descriptors are used. Thereby, the silver clusters are compared to other noble metals and show some similarities to both copper and nickel systems, and also growth patterns have been identified. All vibrational frequencies of all the clusters have been calculated for the first time, and here we focus on the highest and lowest frequencies. Structural effects on the calculated frequencies were considered.

2.
J Phys Chem A ; 126(7): 1289-1299, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35166555

RESUMO

We present an improved inverse-design approach for automatically identifying molecular (or other) systems with optimal values for prechosen properties. The new approach uses SMILES (simplified molecular input line entry system) to describe molecular structures efficiently, a genetic algorithm to optimize the molecules automatically, and the DFTB+ (self-consistent charge density functional tight-binding) method to calculate electronic properties. Thereby, almost every class of materials─even macromolecules or monomers─can be studied easily. Without crossover operators but with only mutation operators, the genetic algorithm is more adaptive to SMILES while keeping its efficiency. DFTB+ is more accurate than the DFTB method used in our previous inverse-design approach for the study of excited states and charge transfer processes. The improved approach is applied to optimize benzene, pyridine, pyridazine, pyrimidine, and pyrazine derivatives for seven electronic properties, which all are highly relevant and important for the performance of molecules in solar cells. We found that for some electronic properties, the precise composition and structure of the backbone have remarkable impacts on the value of the electronic properties and/or on the set of functional groups that leads to the best performance. On the contrary, for other properties, these effects are less pronounced. The reasonable optimal functional groups and/or substitution patterns are reported.

3.
Molecules ; 26(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770824

RESUMO

Molecular level insights into the mechanism and thermodynamics of CO oxidation by a (TiO2)6 cluster have been obtained through density functional calculations. Thereby, in this study, as an example, two different structural isomers of (TiO2)6 are considered with the purpose of understanding the interplay between local structure and activity for the CO oxidation reaction. Active sites in the two isomeric forms were identified on the basis of global and local reactivity descriptors. For the oxidation of CO to CO2, the study considered both sequential and simultaneous adsorption of CO and O2 on (TiO2)6 cluster through the ER and LH mechanisms, respectively. Three different pathways were obtained for CO oxidation by (TiO2)6 cluster, and the mechanistic route of each pathway were identified by locating the transition-state and intermediate structures. The effect of temperature on the rate of the reaction was investigated within the harmonic approximation. The structure-dependent activity of the cluster was rationalized through reactivity descriptors and analysis of the frontier orbitals.

4.
J Phys Chem A ; 123(36): 7872-7880, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433180

RESUMO

Global geometry optimization of metal clusters is an important problem in nanophysics. The starting geometries of the clusters generated with empirical or other model potentials are generally optimized further by density functional theory (DFT)-based energy minimization. For this purpose, several algorithms such as simulated annealing, genetic algorithms, basin hopping, etc. are used. Our building-up procedure generates putative lower-energy structures of metal (M) clusters, Mn+1, Mn+2, etc., by anchoring one or more metal atoms in the vicinity of the minima of the molecular electrostatic potential (MESP) of Mn. Here, we report an application of this method to Agn clusters, for 5 ≤ n ≤ 20, followed up by DFT-based geometry optimization, generating several lower-energy structures than those reported in the literature. New low-energy isomers are obtained by applying the same procedure to the test case of mixed-metal clusters, NinAgm, for n + m = 4 and 5. In conclusion, our MESP-based building-up procedure offers a new general methodology for generating lower-energy geometries of metal clusters.

5.
J Chem Phys ; 147(10): 104101, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28915743

RESUMO

A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

6.
Phys Chem Chem Phys ; 19(36): 24724-24734, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28861565

RESUMO

The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...